

Tyler Strange

Structural Option

Fraser Centre

State College, PA

Tyler Strange

Consultant: Dr. Thomas Boothby April 13, 2011

Fraser Centre

Dr. Thomas Boothby

Structural Option

Tyler Strange

Structural Option

State College, PA

- Existing System
- Proposal
- Gravity System Redesign
- Schedule and Cost Analysis
- Lateral System Redesign
- Architectural Analysis
- Conclusion

Fraser Centre

Dr. Thomas Boothby

Presentation Outline

Introduction

- Composite Floor
- > Steel Connections

		Introduction
General Information •LocationState College, PA Fraser Street and • Size230,000 sf • Project CostUnreleased	Beaver Ave	 11 story mixe First story Second stand retail Third story
 Project Team ArchitectWallace Roberts & General ContractorLeonard S. Fiore, Structural EngineerDavid Chou & Ass 	& Todd, LLC Inc. ociates, Inc.	 Fourth sto Fifth-tenth residentia Eleventh sto
Tyler Strange	Structural Option	

to Fraser Centre

- d-use building v is parking tory is parking
- y is a theatre ory is MEP stories are
- story is suites

Fraser Centre

Dr. Thomas Boothby

Presentation Outline

Introduction Existing System Proposal Gravity System Redesign Composite Floor > Steel Connections Schedule and Cost Analysis Lateral System Redesign Architectural Analysis Conclusion

Floor System •Two-way 12 inch flat slab

Columns

•Columns vary in size from 16in x 32in to 16in x 72in •Spans range from 28.5ft to 40ft

Shear Walls

•4 shear walls located on the residential floors •Shear walls on the lower floors vary from 4 to 10 **Existing System**

Tyler Strange

Structural Option

Fraser Centre

Dr. Thomas Boothby

Presentation Outline

Introduction Existing System Proposal Gravity System Redesign > Composite Floor > Steel Connections Schedule and Cost Analysis Lateral System Redesign Architectural Analysis Conclusion

Depth Proposal

- •Change the floor system to composite concrete and steel beams for the residential levels
- •Redesign the residential shear walls with a new layout

Breadth Proposal

- Analyze the change in cost and schedule of the new floor system
- •Analyze the impact the new shear wall layout will have on the architecture

Proposed Shear Wall Layout

Proposal

Structural Option

Tyler Strange

Current Shear Wall Layout

Fraser Centre

Dr. Thomas Boothby

Presentation Outline

Introduction Existing System Proposal Gravity System Redesign > Composite Floor > Steel Connections Schedule and Cost Analysis Lateral System Redesign Architectural Analysis Conclusion

Steel Deck: 3VLI Deck 18 Gage B1: W12x16 B2: W10x12 G1: W18x76 G2: W16x31 C1: Welded/Bolted Single Angle L4x3x³/₈ C2: Bolted/Bolted Double Angle $L4x3x^{3}/_{8}$

Composite Floor

Codes:

- \bullet

- Material Strengths: Concrete: 4000 psi
 - Steel:

- Load Combinations • 1.2 Dead +1.6 Live
 - 1.4 Dead

Tyler Strange

Structural Option

Presentation Outline

• Original design code used ASCE 7-05 New design code used ASCE 7-10

50000 psi

- Introduction
- Existing System
- Proposal
- Gravity System Redesign
- Schedule and Cost Analysis
- Lateral System Redesign
- Architectural Analysis
- Conclusion

Fraser Centre

Dr. Thomas Boothby

- > <u>Composite Floor</u>
- > Steel Connections

Steel Deck: 3VLI Deck 18 Gage B1: W12x16 B2: W10x12 G1: W18x76 G2: W16x31 C1: Welded/Bolted Single Angle L4x3x³/₈ C2: Bolted/Bolted Double Angle $L4x3x^{3}/_{8}$

Composite Floor

Deflection Check: • Limited to L/360

Results:

- 3 in 18 gage VLI steel deck was used
- 4.5 in of concrete was used to achieve 2 hr fire rating
- W Shapes range from W10x12 to W18x76
- Thickness of residential floor system was increased by 12in

Tyler Strange

Structural Option

- Introduction
- Existing System
- Proposal
- Gravity System Redesign
- Schedule and Cost Analysis
- Lateral System Redesign
- Architectural Analysis
- Conclusion

Fraser Centre

Dr. Thomas Boothby

Presentation Outline

- > <u>Composite Floor</u>
- > Steel Connections

Steel Deck: 3VLI Deck 18 Gage B1: W12x16 B2: W10x12 G1: W18x76 G2: W16x31 C1: Welded/Bolted Single Angle L4x3x³/₈ C2: Bolted/Bolted Double Angle $L4x3x^{1/4}$

Steel Connections

Design:

- Girder to Beam is welded/bolted for constructability • Shear Wall to Girder is bolted/bolted for economics

Results:

- Girder/Beam connection:

 - L4x3x3/8
 - 3/16th weld
 - Two A325N ³/₄" dia. bolts

Tyler Strange

Structural Option

AISC Table 10-11

- Welded/Bolted Single Angle

- Shear Wall/Girder connection:
 - Bolted/Bolted Double Angle
 - L4x3x1/4
 - Three A325N $\frac{3}{4}$ " dia. bolts

- Introduction
- Existing System
- Proposal
- Gravity System Redesign
- Schedule and Cost Analysis
- Lateral System Redesign
- Architectural Analysis
- Conclusion

Fraser Centre

Dr. Thomas Boothby

Presentation Outline

- > Composite Floor
- > <u>Steel Connections</u>

Schedule Analysis

Schedule and Cost Analysis

- overlap.
- linear progression.

Tyler Strange

Structural Option

Current system takes 24 days to complete a single floor with slight

Alternative system takes 10 days to complete a single floor with a

- Proposal
- Gravity System Redesign

- Lateral System Redesign
- Architectural Analysis
- Conclusion

Fraser Centre

Dr. Thomas Boothby

Presentation Outline

Introduction Existing System

- > Composite Floor
- Steel Connections
- Schedule and Cost Analysis

Cost Analysis

	Description	Cost Estimate	
	In Place Forms	2,212,344	
	In Place Reinforcing	3,432	
	4 ksi Ready Mix	60,492	
	Placing Concrete	37,658	
Cost of Curre	ent System	2,313,926	Total

Description	Cost Estimate	
Struct. Steel W16x31	260,361	
Struct. Steel W18x76	829,142	
Struct. Steel W10x12	74,389	
Struct. Steel W12x16	333,575	
Metal Decking	5,450,667	
Weld Shear Conn	66,410	
4 ksi Ready Mix	20,235	
Placing Concrete	12,597	
ernative System	7,047,374	

Cost of Alte

Structural Option

Tyler Strange

Schedule and Cost Analysis

Total

- Proposal
- Gravity System Redesign

- Schedule and Cost Analysis
- Lateral System Redesign
- Architectural Analysis
- Conclusion

Fraser Centre

Dr. Thomas Boothby

Presentation Outline

Introduction Existing System

- Composite Floor
- > Steel Connections

Initial Shear Wall Layout

•Discontinuous between parking levels, theater level, and residential levels

Architectural restraints on position and size

Proposed Shear Wall Layout

•Continuous from theater level to residential levels

- •Number of shear walls is increased from four to seven
- •Shear walls are reduced in size

Lateral System Redesign

Tyler Strange

Structural Option

Fraser Centre

Dr. Thomas Boothby

Presentation Outline

Introduction Existing System Proposal Gravity System Redesign > Composite Floor > Steel Connections Schedule and Cost Analysis Lateral System Redesign Architectural Analysis Conclusion

Shear Wall Design Calculations

Flexural Reinforcement Design

$$0.85f'_{c}ab = A_{s}f_{y} \qquad M_{u} = \phi M_{N} = \phi A_{s}f_{y}jd \qquad \varepsilon_{t} = \varepsilon_{cu} \left(\frac{d_{t}}{d_{t}}\right)$$

 $V_u \leq \phi V_{N,max} = \phi 10 \sqrt{f'_c} h d$

$$\varepsilon_t = \varepsilon_{cu} \left(\frac{d_t - C}{C} \right) > 0.005$$

•Shear Reinforcement Design

Capacity Check

•ACI Chapter 11

$$V_u > \frac{1}{2}\phi V_c$$

•Minimum Reinforcements Governed

$$\rho_{t} = \frac{A_{v}}{sh} \qquad \rho_{l} = \frac{A_{v}}{sh} \ge 0.0025 + 0.5 \left(2.5 - \frac{h_{w}}{l_{w}}\right) (\rho_{t} - 0.0025) \qquad \rho_{l} = \frac{A_{v}}{sh} > 0.0025$$

•Spacing Limitations $s \le \frac{l_{w}}{3} \text{ or } 3h \text{ or } 18^{"}$

Tyler Strange

Structural Option

Lateral System Redesign

3D ETABS Model

•Shear walls modeled in ETABS

•ETABS used to design shear walls and then checked to design by hand

•Controlling Load Case: •1.54D+1.65E

Fraser Centre

Dr. Thomas Boothby

Presentation Outline

Introduction Existing System Proposal Gravity System Redesign > Composite Floor > Steel Connections Schedule and Cost Analysis Lateral System Redesign Architectural Analysis Conclusion

5th Floor-10th Floor

Architectural Analysis

Tyler Strange

Structural Option

Dr. Thomas Boothby

Fraser Centre

Presentation Outline

Introduction Existing System Proposal Gravity System Redesign Composite Floor > Steel Connections Schedule and Cost Analysis Lateral System Redesign Architectural Analysis Conclusion

5th Floor-10th Floor

Tyler Strange

Structural Option

Architectural Analysis

Presentation Outline

Largest impact on architecture occurs in Unit 3C

Fraser Centre

Dr. Thomas Boothby

Introduction Existing System Proposal Gravity System Redesign > Composite Floor > Steel Connections Schedule and Cost Analysis Lateral System Redesign Architectural Analysis Conclusion

11th Floor

Architectural Analysis

Tyler Strange

Structural Option

Dr. Thomas Boothby

Fraser Centre

Presentation Outline

Introduction Existing System Proposal Gravity System Redesign Composite Floor > Steel Connections Schedule and Cost Analysis Lateral System Redesign Architectural Analysis Conclusion

11th Floor

Tyler Strange

Structural Option

Architectural Analysis

Living room width is reduced by 14"

Fraser Centre

Dr. Thomas Boothby

Presentation Outline

Introduction Existing System Proposal Gravity System Redesign > Composite Floor > Steel Connections Schedule and Cost Analysis Lateral System Redesign Architectural Analysis Conclusion

11th Floor

Tyler Strange

Structural Option

Architectural Analysis

Bedroom width is reduced by 14"

Fraser Centre

Dr. Thomas Boothby

Presentation Outline

Introduction Existing System Proposal Gravity System Redesign > Composite Floor > Steel Connections Schedule and Cost Analysis Lateral System Redesign Architectural Analysis Conclusion

Building Weight: •Existing System: •Proposed System: •7,000 kip reduction

72,000 kips 65,000 kips

Architectural Impact:

•Largest impact on floors 5-10 is shortening a single room by roughly 14".

•Largest impact on the 11th floor is shortening the living room by 14 ".

Cost: •Existing System:

Conclusion

Schedule: •Existing System:

Tyler Strange

Structural Option

\$2.3 million/residential floor •Proposed System: \$7.0 million/residential floor •Three times more expensive

24 days/residential floor •Proposed System: 10 days/residential floor •Gain 98 work days for all seven residential floors

Fraser Centre

Dr. Thomas Boothby

Presentation Outline

Introduction Existing System Proposal Gravity System Redesign > Composite Floor Steel Connections Schedule and Cost Analysis Lateral System Redesign Architectural Analysis Conclusion